TWO DIMENSIONAL ANALYSIS OF AN E-CORE INDUCTOR

R. Mertens, K. Hameyer and R. Belmans
Katholieke Universiteit Leuven,
Dep. EE (ESAT), Div. ELEN,
Kardinaal Mercierlaan 94,
B-3001 Heverlee,
Belgium

ABSTRACT: One of the aims of a CAD laboratory in electromagnetics is to make students familiar with commercial CAD packages often based on the finite element technique. To avoid an unquestionable belief in computer results, it is useful to compare the classical approaches with the finite element approach. An E-core inductor with its rather simple construction is chosen as a subject of the CAD laboratory and the inductance of a two dimensional approximation is calculated in different ways.

INTRODUCTION

In spite of its rather simple construction, a core of laminated iron and a coil of copper (fig. 1), an E-core inductor has a lot to offer as a subject of a CAD laboratory. In the classical approach, the inductor is seen as a magnetic circuit (flux tube model), or a superposition of flux-MMF plots of the different tubes of which the inductor is made. Different approximations either include or exclude the magnetomotive force in the iron parts, the non-linear behaviour of the material, the leakage flux or the fringing effect in the air gap. No effects in the third dimension are taken into account. Because a two dimensional finite element calculation deals inherently with those effects, it is used as reference. The students have to compare and discuss the results and the restrictions of the various methods.

CLASSICAL APPROACH

Magnetic circuit

A magnetic circuit based on Hopkinson's law is a first approach to calculate the inductance L. The magnetic circuit is described by a flux tube model. Reluctances represent the different flux tubes of the model. The inductance is calculated from the total reluctance \mathcal{R}_m.

$$L = \frac{N^2}{\mathcal{R}_m} \quad (1)$$

where N is the number of turns of the coil.

A first approximation is obtained by only taken the air gap reluctances into account (fig. 3). It can be noted that the magnetic flux through the right or the left leg is half of the flux through the centre leg. This is a parallel connection in terms of a magnetic circuit.

![Figure 1: Three dimensional view of the E-core inductor.](image1)

![Figure 2: Cross section of the E-core inductor.](image2)

Table 1: Rated values and dimensions of the E-core inductor.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>150 mH</td>
</tr>
<tr>
<td>I</td>
<td>10 A</td>
</tr>
<tr>
<td>N</td>
<td>288</td>
</tr>
<tr>
<td>g</td>
<td>3.3 mm</td>
</tr>
<tr>
<td>a</td>
<td>6 cm</td>
</tr>
<tr>
<td>b</td>
<td>9 cm</td>
</tr>
<tr>
<td>c</td>
<td>9 cm</td>
</tr>
</tbody>
</table>
The total reluctance is given by
\[R_m = R_{m1} + \frac{R_{m2}}{2}. \]

(2)

\(R_{m1} \) is the reluctance of the air gap beneath the centre leg and \(R_{m2} \) is the reluctance of the air gap beneath the right or left leg. The cross-section of the air gap is taken different from the core cross-section to take the fringing effect in the air gap into account. The dimension of the core cross-section is increased with a fraction of the air gap length \(g \) at each side. The cross-section \(S_1 \) of the air gap beneath the centre leg becomes (neglecting fringing in the third dimension)
\[S_1 = (a + 1.2g)b. \]

(3)

\[R_{m1} = \frac{g}{\mu_0 (a + 1.2g)b} \]

(4)

\[R_{m2} = \frac{g}{\mu_0 \left(\frac{a}{2} + 1.2g\right)b} \]

(5)

Table 1 and fig. 2 show the dimensions of the inductor used in the CAD laboratory. Table 2 shows the result of the inductance calculation in which the dimension of the core cross-section is increased with the air gap length at each side.

Leakage flux

The reluctance of a rectangular slot with current carrying conductors is calculated to deal with the leakage flux in the E-core inductor, resulting in an improved magnetic circuit of the inductor (fig. 4). The reluctance \(R_{m3} \) is obtained starting from Ampère's law [4]. This exercise is very useful because it stresses that the general formulæ for the reluctance are only valid in case of an uniform field distribution.
\[R_{m3} = \frac{3}{2} \frac{a/2}{\mu_0 b c} \]

(6)

The total reluctance is given by
\[\frac{1}{R_m} = \frac{1}{R_{m1}} + \frac{1}{R_{m2}} + \frac{1}{R_{m3}}. \]

(7)

Table 3 shows the result of the inductance calculation based on this improved magnetic circuit.

Fringing effect based on the Carter factor

Two different factors can be used to obtain an improved approximation of the fringing effect in the air gap (fig. 5). The Carter factor, the first one, is defined as the ratio of two air gap lengths, the real length \(g \) of the air gap and the equivalent length \(\delta \) of a smooth air gap (without slots) in which the same magnetic energy is stored.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\(R_{m1} = 4.381 \times 10^5 \text{ H}^{-1} \) & \(R_m = 8.367 \times 10^5 \text{ H}^{-1} \) \\
\hline
\(R_{m2} = 7.972 \times 10^5 \text{ H}^{-1} \) & \(L = 0.099 \text{ H} \) \\
\hline
\end{tabular}
\caption{Inductance calculation based on a simplified magnetic circuit of the inductor.}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c|}
\hline
\(R_{m1} = 4.381 \times 10^5 \text{ H}^{-1} \) & \(R_m = 7.036 \times 10^5 \text{ H}^{-1} \) \\
\hline
\(R_{m2} = 7.972 \times 10^5 \text{ H}^{-1} \) & \(L = 0.118 \text{ H} \) \\
\hline
\(R_{m3} = 8.842 \times 10^6 \text{ H}^{-1} \) & \\
\hline
\end{tabular}
\caption{Inductance calculation based on an improved magnetic circuit of the inductor.}
\end{table}
The Carter factor is defined as [5, 6]:

\[k_c = \frac{\lambda}{\lambda - \alpha g} \] \hspace{1cm} (9)

with

\[\alpha = \frac{4}{\pi} \beta \arctan(\beta) - \ln(1 + \beta^2) \] \hspace{1cm} (10)

\[\beta = \frac{w}{2g} \] \hspace{1cm} (11)

The same air gap is seen in two different ways, but with the same reluctance, to determine the correction factor \(k_f \) of the cross-section of the air gap.

\[\frac{k_c \rho g}{\mu_0 \lambda b} = \frac{g}{\mu_0 (\lambda - w + 2k_f g) b} \] \hspace{1cm} (16)

\[k_f = \beta - \frac{\alpha}{2} \] \hspace{1cm} (17)

The cross-section \(S_1 \) of the air gap beneath the centre leg of the E-core becomes (neglecting fringing in the third dimension)

\[S_1 = (a + 2k_f g) b. \] \hspace{1cm} (18)

Table 4 shows the result based on the Carter factor.

Fringing effect based on a Carter-like factor

The second factor is based on the Carter factor and can only be calculated using the finite element method. Instead of applying the Dirichlet boundary condition at the left hand side of the model, it is applied at the top side (fig. 5c).

Table 4: Inductance calculation with a better approximation of the fringing effect based on the Carter factor.

<table>
<thead>
<tr>
<th>(k_c)</th>
<th>(k_f)</th>
<th>(R_m^1)</th>
<th>(R_m^2)</th>
<th>(R_m^3)</th>
<th>(R_m^4)</th>
<th>(L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.27</td>
<td>1.61</td>
<td>4.133 \times 10^5 H^{-1}</td>
<td>7.187 \times 10^5 H^{-1}</td>
<td>8.842 \times 10^6 H^{-1}</td>
<td>6.579 \times 10^5 H^{-1}</td>
<td>0.126 H</td>
</tr>
<tr>
<td>1.28</td>
<td>0.91</td>
<td>4.423 \times 10^5 H^{-1}</td>
<td>8.111 \times 10^5 H^{-1}</td>
<td>8.842 \times 10^6 H^{-1}</td>
<td>7.114 \times 10^5 H^{-1}</td>
<td>0.117 H</td>
</tr>
</tbody>
</table>

Table 5: Inductance calculation with inclusion of the MMF drop in the iron parts.

<table>
<thead>
<tr>
<th>(k_f)</th>
<th>(R_m^5)</th>
<th>(R_m^6)</th>
<th>(R_m^7)</th>
<th>(R_m^8)</th>
<th>(\Phi)</th>
<th>(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.91</td>
<td>6.837 \times 10^5 H^{-1}</td>
<td>2.735 \times 10^5 H^{-1}</td>
<td>1.367 \times 10^5 H^{-1}</td>
<td>3.646 \times 10^5 H^{-1}</td>
<td>7.579 \times 10^5 H^{-1}</td>
<td>L = 0.109 H</td>
</tr>
</tbody>
</table>

Table 6: Inductance calculation with inclusion of the MMF drop in the iron parts.

Figure 6: Approximation of the fringing effect using the Carter based factor.

Figure 7: Magnetic circuit of the inductor with inclusion of the MMF drop in the iron.
The equivalent magnetic reluctance can be seen as a parallel connection (fig. 7) of the reluctance \mathcal{R}_m of the air gap, fringing included, and the reluctance \mathcal{R}_m of a rectangular slot with uniform field distribution. The value of \mathcal{R}_m is used to obtain the reluctance of the air gap with a better approximation of the fringing effect. Table 5 shows the result based on the Carter-like factor.

Inclusion of the magnetomotive force drop in the iron parts

Figure 8 shows a possible magnetic circuit including the magnetomotive force drop of the iron parts. The iron is assumed to be linear. Further refinement of this model is not necessary because a rough finite element model takes over. The average length of a flux line in each iron part is determined, to calculate the reluctance of that part. Table 6 gives the results of this calculation. The knowledge of the γ-Δ transformation is needed to simplify the magnetic circuit.

Inclusion of the non-linear behaviour of the iron parts results in flux dependent reluctances. The inductance can be obtained by solving a non-linear system of equations.

Superposition of flux-MMF plots

Another approach including the non-linear behaviour of the iron parts but not the leakage flux, is the superposition of the flux-MMF plot of the air gaps with the flux-MMF plots of the iron parts. Table 7 shows the working scheme. Due to the difference in magnetic flux through the left or right leg and the middle leg, both paths are separately handled. The relation between the fluxes defines how the flux-MMF plots have to be combined. The flux-MMF plot of an air gap is defined by its reluctance. The flux-MMF plot of an iron part is obtained starting from the magnetization curve (fig. 8). Figure 9 shows the flux-MMF plots. The last step results in the inductance versus the current (fig. 10). Table 8 gives the value of the inductance for the rated value of the current.

FINITE ELEMENT APPROACH

The calculation of the inductance is based on the identification of the magnetic energy W stored in the inductor expressed in magnetic quantities

$$W = \int \left(\int H \, dB \right) \, dV,$$

and the same energy expressed in electric quantities

$$W = \frac{1}{2} L I^2.$$

Figure 11 shows the flux plot of the finite element solution of the inductor, while table 9 shows the result of the finite element calculation of the inductance.

<table>
<thead>
<tr>
<th>Table 7: Working scheme for the superposing of flux-MMF plots.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
</tr>
<tr>
<td>Step 2</td>
</tr>
<tr>
<td>Step 3</td>
</tr>
<tr>
<td>Step 4</td>
</tr>
<tr>
<td>Step 5</td>
</tr>
</tbody>
</table>

Table 8: Calculation of the inductance by superposing the flux-MMF plots.

$L = 0.097 \, \text{H}$
CONCLUSION

The understanding of a simple magnetic system such as an inductor forms the basis of more difficult magnetic systems as electrical motors and gives an idea on what can be neglected during a finite element calculation. Comparing the different results shows the importance of fringing, leakage, MMF drop and non-linear behaviour. When a device can not be considered as infinity long as the E-core inductor, and a three dimensional finite element calculation is required, becomes also clear.

ACKNOWLEDGEMENT

The authors are grateful to the Belgian Nationaal Fonds voor Wetenschappelijk Onderzoek for its financial support of this work and the Belgian Ministry of Scientific Research for granting the IUAP No. 51 on Magnetic Fields.

REFERENCES

5. Carter, F. W., A Note on Airgap and Interpolar Induction, *JIEE* 29, 925 (1900).