A Multi-Conductor Model for Finite Element Eddy Current Simulation

H. De Gersem and K. Hameyer
Katholieke Universiteit Leuven, Dep. EE (ESAT)/ Div. ELEN
Kardinaal Mercierlaan 94, B-3001 Leuven, Belgium
tel: +32 16 321020 – fax: +32 16 321985
e-mail: Herbert.DeGersem@esat.kuleuven.ac.be

Abstract—The stranded conductor finite element model does not account for the skin and proximity effects in a multi-conductor system. The solid conductor model considers the true geometry, all the individual conductors and their connections which results in unmanageably huge models. The multi-conductor model proposed here, avoids meshing the inner geometry, discretises the voltage and enforces the current redistribution typical for multi-conductors by a weak formulation. The magnetic and electric meshes are independently and adaptively refined, yielding accurate results for relatively small models.

Introduction

Multi-conductor (MC) systems arise in almost all quasi-static electrotechnical devices [1] (Fig. 1). Dependent on the frequency \(f \), the permeability \(\mu \), the conductivity \(\sigma \) and the characteristic diameter \(d \), the individual conductors experience skin and proximity effects related to the skin depth \(\delta = \sqrt{\frac{1}{\mu f \sigma}} \). If \(\delta \gg d \), the stranded conductor finite element model is appropriate. If \(\delta \ll d \), impedance boundary conditions are commonly applied. If \(\delta \) and \(d \) are of the same order of magnitude, the skin effect is resolved by eddy current simulation relying upon the solid conductor model. The unidirectional skin effect in foil conductors is considered in [2].

Devices may feature a large amount of MC systems, each consisting of a considerable number of turns. This may hamper the simulation of the overall device. Several model reduction techniques, such as e.g. analytical macro-elements [3] and inner node elimination techniques [1], exist. They reduce the multi-conductor model parts in advance, and hence, lack adaptive error control for them during the proper finite element simulation. Here, the troublesome geometrical details are approximated by a discretisation and are incorporated as such in the finite element model. An error estimator updates the MC model during the simulation.

Multi-Conductor Model

The MC has a cross-section \(\Omega_{mc} \) in the \(xy \)-plane and a length \(L_{mc} \). An additional electric mesh is constructed on \(\Omega_{mc} \) (Fig. 2). To simplify the implementation, a tensor grid is preferred. The voltage \(\Delta V(x, y) \) across \(\Omega_{mc} \) vary with \(x \) and \(y \) due to the vicinity of other conductors, permeable materials and local heating effects. \(\Delta V(x, y) \) is resolved by multi-conductor voltage shape functions (VSFs) \(M_q(x, y) \), on \(\Omega_{mc} \):

\[
\Delta V(x, y) = \sum_{q}^{n_{mc}} \Delta V_q M_q(x, y),
\]

Insulation material and gaps are accounted for by the fill factor \(f_{mc} = \frac{N_{mc} A_s}{A_{mc}} \) with \(N_{mc} \), the number of turns and \(A_s \) and \(A_{mc} \) the cross-sections of an individual conductor and the entire MC respectively. The electric mesh does not coincide with the magnetic one nor with the true MC geometry. The consistency of the discretisation, however, required the voltage mesh to tend to the MC geometry if refinement is applied. Also, \(f_{mc} \) has to converge to 1. Hence, the gaps and the insulation regions disappear out of the support of the electric mesh causing the latter to become disconnected.

Consider e.g. the 2D time-harmonic, magnetodynamic formulation in terms of \(A_z \), the \(z \)-components of the magnetic vector potentials. The current density is

\[
J_{mc}(x, y) = \frac{\sigma f_{mc}}{L_{mc}} \Delta V(x, y) - j\omega A_z(x, y)
\]

with \(\omega = 2\pi f \) the pulsation. The average current density \(I_{mc} \) in the MC is related to the MC current \(I_{mc} \) by \(I_{mc} = \frac{N_{mc}}{A_{mc}} J_{mc} \).

The restrictions to the current distribution due to insulation,
are the coefficients of \(A(x,y) \) with respect to the magnetic finite elements \(N_j(x,y) \). \(\xi = 1/\omega L_{mc} \) is a symmetrisation factor. The MC model fits within the field-circuit coupling approach developed in [4].

CONVERGENCE

The convergence of the mixed discretisation technique is studied for an analytical example. The discretisation error is plotted in Fig. 3. The error decays both, when the magnetic mesh is refined and when the number of VSFs is increased. The dashed line denotes loci for which the error is identical. The experiment indicates that it is sometimes more advantageous to apply a finer magnetic mesh than to consider all geometrical details due to the electrical insulation in the MC system.

The voltage across the entire MC is attained by homogenising \(\Delta V(x,y) \) over \(\Omega_{mc} \):

\[
\Delta V_{mc} = \frac{1}{\Omega_{mc}} \int_{\Omega_{mc}} \Delta V(x,y) \, \mathrm{d}\Omega.
\]

The weak formulation of the magnetodynamic problem, (3) and (4) are assembled into the coupled system of equations

\[
\begin{bmatrix}
 k_{ij} & z_{ij} & 0 & \varepsilon g_{ij} & 0 \\
 z_{ij} & \xi g_{ij} & \xi s_p & 0 & 0 \\
 0 & \xi s_p & 0 & 0 & 0 \\
 A_j & \Delta V_q & 0 & 0 & 0 \\
 \Delta V_q & I_{mc} & 0 & 0 & 0
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 0 \\
 0 \\
 0
\end{bmatrix},
\]

with

\[
k_{ij} = \int_{\Omega} \frac{1}{\mu} \nabla N_i \cdot \nabla N_j \, \mathrm{d}\Omega;
\]

\[
z_{ij} = -\int_{\Omega} \frac{\sigma}{\xi} N_i M_j \, \mathrm{d}\Omega;
\]

\[
g_{ij} = \int_{\Omega} \frac{\sigma f_{mc}}{\xi} M_i M_j \, \mathrm{d}\Omega;
\]

\[
s_p = -\frac{N_{mc}}{\Delta V_{mc}} \int_{\Omega} M_p \, \mathrm{d}\Omega,
\]

\(\Omega \) is the computational domain. \(A_j \) are the coefficients of \(A(x,y) \) with respect to the magnetic finite elements \(N_j(x,y) \).

APPLICATION

The MC model is applied to simulate the harmonic losses in induction machine windings [5] (Fig. 4). At 50 Hz, no significant skin effect is observed. At 500 Hz, substantial losses are introduced. The MC model enables the simulations of all situations in Fig. 5 by the same conductor model. The automated mesh refinement technique only inserts elements where required, e.g. where the error estimator indicates high losses.

CONCLUSIONS

The authors are grateful to the Belgian "Fonds voor Wetenschappelijk Onderzoek Vlaanderen" (G.0427.98) and the Belgian Ministry of Scientific Research (IUAP No. P4/20) for the financial support of this work.

ACKNOWLEDGMENTS

The authors are grateful to the Belgian “Fonds voor Wetenschappelijk Onderzoek Vlaanderen” (G.0427.98) and the Belgian Ministry of Scientific Research (IUAP No. P4/20) for the financial support of this work.

REFERENCES

