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Abstract— A very simple but realistic model for ferromagnetic
materials is proposed under the form of a functional to min-
imise. This functional is then used to derive the corresponding
expression of the Maxwell stress tensor.

I. INTRODUCTION

IN a recent paper, a systematic derivation of the elec-
tromagnetic (EM) force density from the expression of

the EM energy density was presented by the authors. It
was applied to air (no magnetisation) and permanent magnet
materials (magnetisation is independent of the magnetic field).
In this paper, it is intended to make one step further and to
apply the same procedure to saturable ferromagnetic materials
(reversible case).

As the forces are directly derived from the knowledge of the
EM energy density, the problem is simply to find a satisfactory
expression of the latter. The classical expression is

ρΨ(�b, ε) =
∫ �b

0

�h(�b, ε) · d�b, (1)

which has the nice formal property that

δρΨ
∣∣
δε=0

= �h · δ�b. (2)

The idea is then to collate measurements of �h(�b, ε) and to
integrate them. This approach has however the following
drawbacks.

Firstly, it does not rely on a real material model. The
expression of the EM energy density is on the contrary induced
from empirical constitutive laws, i.e. which are obtained from
measurements. But measurements gives only a partial view
on the complexity of the electromechanical behaviour of a
real material, because of the limited number of measure-
ments and the unavoidable experimental errors. Moreover,
only global quantities (magnetic fluxes, displacements) are
measured, whereas the constitutives laws are in terms of the
corresponding local quantities (�b and ε), and the required
transposition from ‘global’ to ‘local’ is not trivial in practice
and full of pitfalls and simplifying assumptions.

Secondly, the integral with vector-valued bounds in (1)
requires a mathematical definition in order to be useable. A
suitable definition is

ρΨ(�b, ε) =
∫ t

0

�h(�bt(u), εt(u)) · �̇bt(u) du, (3)
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where�bt(t) and εt(t) represent pathes starting from a reference
state and verifying �bt(t) = �b and εt(t) = ε. The energy density
is properly defined if the integral in (3) is independent of the
chosen pathes, which gives integrability conditions that are not
easy to fulfill in practice.

II. FERROMAGNETIC MATERIAL

For these reasons, a completely different approach is pro-
posed in this paper. Instead of basing the material description
upon constitutive laws, as is usually done, we shall define a
simplified but realistic model for the ferromagnetic materials.

Ferromagnetic materials are substances with permanent
atomic magnetic moments that are coupled by long-range
exchange forces of quantum-mechanical origin. Therefore,
they line up with each other and create an intense magnetic
moment density. On the other hand, in order to minimize the
overall magnetic energy, a macroscopic ferromagnetic sample
tends to break up into several domains, called Weiss domains.
The magnetic moment density is homogeneous within each
domain but its orientation varies from one domain to the next,
so that the total magnetic moment of the sample vanishes if no
external field is applied. Because of anisotropy and provided
the material is not highly saturated, the magnetic moments of
the domains are preferably oriented along one of the easy-axes
of magnetisation of the crystal. These are the mechanisms we
are going to implement in our material model.
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Fig. 1. Euclidean placement of a small piecce of ferromagnetic material.

A small piece of ferromagnetic material M is considered
at an intermediary scale between the microscopic structure of
the ferromagnet (Weiss domains, . . . ) and the characteristic
macroscopic dimensions of the system. The placement map p
determines in the euclidean space E a paralelepiped region
p(M) spanned by the vectors �r, �s and �t. The volume of
p(M) is V = (�r × �s) · �t. Let N be the number of magnetic
moments in M and M0 their magnitude. These are constant
numbers. Let us assume a 2D monocrystal, with two easy-
axes of magnetisation, respectively aligned with the α and β



directions. There are then 4 possible states for each atomic
moment, i.e. ±α and ±β. Let a, b, c and d be their relative
populations, with a, b, c, d ∈ [0, 1] and a+ b+ c+ d = 1. This
has the pictorial representations showed at Fig. 2.

Fig. 2. A simple ferromagnetic materialmodel.

In order to calculate forces, one needs to express the
induction field �b in p(M) ⊂ E explicitly as a function of
the fluxes across the facets of M . Since the induction field is
a differential form of 2d degree, one has in 2D (See [3], [4])

�b(φi, �rj) = φOBC
�r

V
+ φOCA

�s

V
. (4)

with φOBC and φOCA the fluxes across the facet OBC et
OCA in Fig 1. On the other hand, if the ρ

�M is assumed to
be a differential form of 1st degree, (See [4] for a discussion
of this assumption), it is represented in E by

ρ
�M(�rj , ak) = NM0

[
(a − c)

�s × �t

V
+ (b − d)

�t × �r

V

]
. (5)

Let us now define the energy density of our ferromagnetic
material, subjected to an induction field �b, by

ρΨ =
|�b|2
2µ0

−�b · ρ �M + C
(NM0ξ)2

2
(6)

with �b given by (4), ρ
�M given by (5) and

ξ2 = (b − a)2 + (c − b)2 + (d − c)2 + (a − d)2. (7)

The first two terms in (6) are classical. The third one is a
tentative expression for the internal energy of the sample.
It is interpreted as follows. As shown at Fig. 2, the four
domains can be considered as forming a magnetic circuit. Each
imbalance between two successive moments in that circuit
creates a kind of leakage field, which generates magnetostatic
energy in the surroundings. This assumption is of course
somewhat rudimentary, but we shall see it gives already very
important and nicely general results.

III. MATERIAL MODEL

The material model we are seeking for is given by the
minimisation of the energy density functional (6). In order
to get rid of the constraint a + b + c + d = 1, independent
internal variables ζ, η, θ ∈ [0, 1] are defined, such that a = ζ η,
b = (1−ζ) θ, c = ζ (1−η) and d = (1−ζ) (1−θ). Equation
(7) becomes

ξ2 = 2− 4ζ2η(1 − η) − 4(1 − ζ)2θ(1 − θ) − 6ζ(1 − ζ). (8)

Using (8), the energy density functional ρΨ can be written in
terms of the independent thermodynamic variables φ i, �rj and
ζk. The material model is now defined by the minimisation

ζ�
k (φi, �rj) ≡ min

ζk∈[0,1]
ρΨ(φi, �rj , ζk) (9)
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Fig. 3. Magnetisation curves as a function of the orientation of the magnetic
field with respect to �r.

with respect to the internal variables ζk.
This simple model of a ferromagnetic material, which

involves only one free parameter C, is already able to represent
saturation and a certain kind of anisotropy, as shown at Fig. 3.
In this case, the value of C is related with the susceptibility of
the material, i.e. the slope at zero-field of the magnetisation
curve. In general, the value of the free parameters are de-
termined by matching the constitutive laws derived from the
material model with measurements.

IV. ELECTROMAGNETIC FORCES

The advantage of having a real material model is that it
directly gives an expression for the energy density, from which
forces are directly derived by

δ
{
V ρΨ (φi, �rj , ζ

�
k (φi, �rj))

}∣∣
δφ=0

= V �∇�u : σ (10)

where σ is by definition the Maxwell stress tensor and
�∇�u(�rj , δ�rj) is the gradient of the displacement field obtained
by perturbing the �rj vectors (virtual displacement). The total
variation of energy is

δ
{
V ρΨ

}
= δV ρΨ + V

∂ρΨ

∂φi
δφi + V

∂ρΨ

∂�rj
δ�rj + V

∂ρΨ

∂ζk
δζk.

(11)
The second term at the r.h.s. plays no role for forces because
δφ = 0 in (10). The fourth term does not play a role either,
because (9) implies that either ∂ρΨ

∂ζk = 0 or δζk = 0 at
equilibrium. The only thing that remains to do now, is to
factorize the two remaining terms into the form of the r.h.s.
of (10). This will be done in the full paper.
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